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STABILITY OF THIN-WALLED TUBES UNDER TORSION

By L. H. DON,'_ELr.

SUMMARY

Ia this paper a theoretical solution is developed for the

torsion or_ a round thi_ tube/or which th_ walls

become ttnstable. The results o/this theory are given by

a few simple formulas and curves which cover all cases.

The differential effuations o/c_tilibrium are derived in a

ximpler form than previously found, it being shown that

many items can be neglected. The solution obtained is

"exact" /or the two extreme cases when the diameter-

length ratio is zero and infinite, and is a good apprca-i.

mution for intermediate cases. The theory is compared

_oitt, all available ezperirnents, indudin 9 about 50 tests

made by the author. The ex_erirnental-/ailure torfftts is

always smaller than the theoretical-dn_ckling tarfftte, aver-

aging about 75 percent o.f it, with a minimum o] 60 per-

cent. .4s the form o/ the deflection checks closely with

that predicted by theory and the experiments cover a great

range o] shapes and materials, this discrepancy can rea-

,_onably be ascribed largely to initial eccentricities in
actual tubes.

SYMBOLS

l, t, r, d, length, thickness of wall, and mean radius and

diameter of the tube, respectively.
E, g, Young's modulus, and Poisson's ratio (0.3 for

engineering metals).

S, critical shear stress (equals the critical torque times

n, number of circumferential waves in buckling de-
formation.

0, angle of waves with the axis, measured near the mid-
die of the tube.

x, s, longitudinal and circumferential coordinates,

measured axially from the normal section at the

middle of the tube, and circumferentially from some
genetrix, figure 13.

Pz, v, w, longitudinttl, circumferential, and radial com-
ponents of the displacement during buckling, takan
as positive in the z, s, and outward directions,

13.
• ,, _,, e,, x,, _,, x,, linear strains in the z and s directions

and the shearing strain, and the changes in curva-
ture in the z and s directions and the unit twist, all

due to the buckling displacement.

Tt, T,, T,, Tt,', zVz, .V,, G,, G,, G,,, G_,', resultant
normal and shear forces, and resultant bending and

twisting moments, due to the buckling displacement,

all reckoned per unit length of section, as shown in

figure 14.

he, ),_,- X_,, numbers relating to the axial length of
buckling waves.

_t_a+b, X2-a-b, k3_-a_-ic, X_-a-ic, where
a, b, c are real numbers.

U., V., W. are real numbers used in the expressions
(13) for u, v, and w.

V_ 5' 5 z
_-_ + _-_, V 4 signifies application of V_ twice, etc.

All equations given in the paper are dimensionally

correct, so any consistent units of distance and force

may be used.
RESULTS

According to the theory developed in this paper, the

torsional shear stress at which buckling occurs in short

and moderately long tubes is given by the full lines in
figure 1, or is very nearly expressed by the formulas

.4 =.4.6 + _7.8 + 1.67H _ (clamped edges, J< 7.8)

AI2.8+_/2.6+l.40H an (hinged edges, J<5.5) (1)

It is assumed that all components of displacement are
prevented at end cross sections of the tube, and that

"clamped" edges are held perpendicular to these cross
sections while "hinged" edges are free to change their
angle with the cross sections. It is found to be imma-

terial whether or not the ends of the tube are free to
move as a whole.

For very long slender tubes the number of circum-

ferential waves, n, is small, and there is a slight devia-
tion from the above laws, as the number of waves

changes from one whole number to the next. In figure
2 the straight lines de represent the above laws, while
the irregular lines represent the more exact law. When

J exceeds a certain value, n remains always 2 (at least

for any tubes of practical proportions). For large
values of J the critical stress for both end conditions

3
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STABILITY OF TEIN-WALLED TUBES UNDER TORSION

is given very. nearly by the straight line eef, whose

equation is
S ffi0.77 V'J (2)

For practical purposes equation (1) may be used

when J is less than 7.8 for clamped edges, or 5.5 for
hinged edges, as indicated in (l), while (2) is used when
J exceeds these values.

I00

JO

rl

5

If buckling takes place all around the tube, a must

naturally be a whole number, and its value may be
taken as the whole number nearest to the value found

from figure 3. In many tests,especiallywhen a is

|arge,buckling takes place over only part of the tube.
In such a case n is taken as the circumference divided

by the average width of the waves, and it therefore

need not be a whole number.

The buckling deformation consists of a number of

circumferential waves which spiral around the tube
from one end to the other, as shown by the photo-

graphs of actual specimens (fig. 6). The theoretical

number of circumferential waves, n,,is indicated in

figure2 for long slender tubes. For short or moder-

ately long tubes the theoreticalvalue of n is given by

the curves of _mro 3.

/0,000 IO0/O00 '

Fmmm £--The m_l_ o4'tl_ w_vm wt_h _ to _* cyllnd_ _ _" abort _nd m_llum length tubm.

The theoretical angle of the waves with the axial
direction, near the middle of the tube, e, is given in

figure 4 for short and moderately long tubes. For long
slender tubes it may be taken as

_--_ (clamped edges) (3)

.184d
(hinged edges)

in degrees, where n is as given in figure 2,

.t
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To check the above theoretical results, the author

has made more than 50 tests; in addition, the results

of many other experiments have been published by
the N.A.C.A. (reference 1) and oi;hers. All the avail-

able test results have been plotted on figures 1, 2, 3,

and 4. All the tests were made with clamped edges.

Comparing the experimental results with the theoreti-

cal curves for clamped edges, it will be seen that all

tests give values for the failure stress somewhat lower

than the values for critical stress predicted by theory.

The experimental values average about 75 percent of

the theoretical, with a minimum for metal tubes of

about 60 percent of the theoretical.

These relations hold over an enormous range o.f

sizes, proportions, and materials. The form of the

buckling deflection, as measured by the number and

angle of the waves, checks closely with that predicted

by theory. It is therefore reasonable to suppose that

the discrepancy between the theoretical and experi-

mental values of failure stress is due chiefly to unavoid-

able defects in actual tubes. Some of the discrepancy

is undoubtedly due to the fact that a true clamped

edge is impossible to attain in practice. But it is

probable that most of it can be ascribed to initial

eccentricities; that is, departures from a true cylindri-
cal form, always present in actual tubes. Among the
tests made on long fiat strips in shear (which is con

sidered the limiting case of a tube under torsion when
H-0), those made by Bollenrath (reference 2) record

the stress at which wrinkling began, and these stresses

average less than half the theoretical, as shown in

figure 1. Similar results were obtained by Gough and
Cox (reference 3), but these experimenters took meas-
urements of the buckling deflections at various loads

and with this data were able to calculate, by a method

developed by Southwell (reference 4), the probable

load at which the strips would have buckled if there

had been no eccentricities. These calculated values

check the theoretical values very well, as shown in fig-
ure 1. It seems likely that most of the discrepancies in

the tests on tubes could be exglained in the same
manner if similar data were available.

By multiplying the right-hand sides of equations (I)

and (2) by the factor 0.75 or 0.60, we obtain, respec-

tively, expressions for the arsrags and minimum

resistance to buckling to be expected from an actual

tube. The following equations are obtained by multi-

plying the right-hand sides of equations (1) by 0.60

and taking _-0.3:

S- E(_)[3-0 + _/3.5 + -68 (t_i_ (clamped edges)

These formulas cover all present-day applications and

are recommended for design purposes. Being based on

CO_E FOR AERONAUTICS

the minimum results from all available tests ou metal

tubes, more than 120 tests, they should give values

which are always on the safe side. They are repre-

sented graphically by the broken lines in figure 1.

The case of hinged edges has an application, for

example, in the case of a circular monocoque fuselage,
without longitudinal stiffeners and with circumferential

stiffeners or rings of an open cross section, with small

stiffness against twist. The portions of the covering

between rings are very. nearly in the condition of tube._

with hinged edges, as the rings, while stiff against linear
movements, _ve little resistance to rotation of the

edges. In such a case there is little interference

between adjacent sections of thecovering in buckling,

as where one section buckles outward the next section
can buckle in.

rllSTORY or P_OSLE._t

In 1883 GreenhiU obtained a solution for the sta-

bility under torsion of a long solid shaft (reference 10).

This solution applies also to hollow shafts or tubes,
representing a solution for the ease n-1. It will be

shown later that this solution can be obtained in a

much simpler way, and-that it actually has little prac-
tical importance.

The first paper on thin walled tubes under torsion

seems to have been written by Schwerin (reference 5)

in 1924. He develops the following formula for the
critical stress of tubes in torsion

The values found in experiments are mostly much

higher than those given by this formula. For the

shortertubes the testresultsare 30, or more, times the

formula value; for longer tubes the discrepancy de-
creases. The value in the final parenthesis in the

above formula is practicallyunity, as with available

materials t/rmust be very.small iffailureby buckling
occurs before failureof the material. If thisvalue is

taken as unity, Schwerin's equation checks equation

(2),except for a differenceof about 16 percent in the

coefficient,as shown in figure2. Schwerin obtained

his resultfrom a solution of differentialequations of

equilibrium, by neKlecting all end constraints and

assuming that n = 2. Equation (2)is alsofor the c.lse

n-2, and as it holds for both clamped and hinged

edges,itisevident that end conditions are unimportant
in the range to which itapplies. From thischeck and

from the check with experiments, it is evident that

Schwerin's equation is an at leastapproximately cor-

rect solution for rery long slender tubes, that is, for
the range, say, when J>6.

The above equation is the only part of Schwerin's

paper which iscommonly quoted. However _chwerin

also discussed in this paper the cases where n has

other values than 2. He checked Greenhill's result
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for the case n = I, and showed how individual results
could be obtained with other values of n, and with a

consideration of end conditions.. He calculated the

relation between the buckling Stress and r/l for several
values of • and for several values of t/r, with the end

conditions z-±//2: w-0. These calculations give

good checks with the theory and experiments found
by the author for more specific end conditions. How-

ever Schwerin failed to develop any way of simplifying
his results, except for the case discussed above, and he

did not carry them far enough to be of practical value
to users of short or moderately long thin-walled tubes.

In the same year (1924) a solution was published

by Southwell and Skan (reference 6) for the critical
shearing stress on a fiat strip of infinite length. This

case may be considered to be the limiting case for a
tube under torsion, when the ratio of length to diam-

eter becomes zero. As the theory of the present paper
is "exact" for this extreme case, it concides with the

Southwell and Skan theory, when lid is set equal to

zero. The existence of this solution for a limiting

case was naturally of great help to the author in

developing a general theory" of torsional stability, and
many valuable suggestions were taken from the in-

genious methods of solution used by these writers.
In 1931 a paper on the buckling of tubes under tor-

sion was published by Sezawa and Kubo (reference 7).

In this a general thedry is developed and worked out
for a number of cases, and nine very complete tests on

rubber models are reported. The results of this theory

are not in agreement with experimental results. The

experiments on rubber models cited in the paper hap-

pen to be in a range where the discrepancy is not so

great, the ratio between the Critical stress found by
ex'periment and that predicted by the theory being
from 0.5 to 3. However, for most of the available

experiments on metal cylinders, this ratio is much

higher--as much as 50 or more in many cases. The
differential equations of equilibrium on which the so-

lution is based seem to be incorrect, the very important

term T2/a (using the paper's symbols) having appar-

ently been omitted from the third equation.
The results of the experiment_ described by Sezawa

and Kubo are reasonably consistent with the results

of other ex'periments and the theory of the present

report (see fig. 1), and certainly as consistent as could

be expected when it is considered that a material was

used which many e.x'perimentere consider unsuitable

for quantitative work. The check is excellent in re-

spoor to ,_ and 8, which do not depend on E (figs. 3
and 4). In reference 7 very complete data are given
on the shape taken by the specimens at all stages of

the loading, from the unloaded condition to the
critical load. This data affords a very interesting

picture of the way in which the deflection, starting

from the initial unevenesses, changes to the final

buckling form. A method of studying this que.stion

theoretically has been suggested by the present author
(reference 8), and applied to the case of simple struts.

This question is doubtless umre of academic than of

practical interest.

In 1932, the National Advisory. Committee for

Aeronautic_ published the results of an extensive series

of tests by Lundquist (reference I) on the strength in

torsion of thin-walled duralumin tubes. No theoreti-

cal annlysis was attemptedl These tests, together

with the tests made by the author, constitute the bulk

of the experimental evidence cited in the present paper.

In 1932, also, a theoretical paper was published by

Sanden and TSlke (reference 1l) on the stability of

thin cylinders, the case of torsion being considered

among others. These authors used very complete and

therefore complex equations of equilibrium, but they
carried their work on torsion no farther than Schwerin.

It is very interesting to note that their equation 130b,

for the case _=2, is exactly the same as equation (2)

of the present paper, which was obtained independ-
ently with very much sinlplified equilibrium equations.

The experimental results of Bollearath (reference 2),

published in 1929, and of Gough and Cox (reference 3),

published in 1932, on narrow fiat stripsin shear, have

already been discussed.

THE TESTS AND DESCRIPTION OF SPECIAL TESTING
APPARATUS

The author's tests were performed at the Guggen-
heim Aeronautical Laboratory of the California In-

stitute of Technology. With one exception the speci-
mens were of small size, from _ inch to 6 inches diam-

eter, and made of steel and brass "shim stock" from

0.002 inch to 0.006 inch tlfick. Such sizes were se-

lected because of the great ease and cheapness of con-

struction and testing. The exception mentioned was

very much larger (27 inch diameter) ; all the N.A.C.A.

tests (reference I) were on specimens 15 inches and 30

inches in diameter. Comparison of the results indi-

cates that there is no great disadvantage or danger in

using such small specimens. In all tests the propor-

tions were such that the stresses were always well be-

low the elastic limit.

The material was carefully rolled around rods of

proper diameter to give it approxhnately the desired

curvature, the longitudinal seams were soldered, and
the tubes were then soldered to heavy, end pieces

Jigs were used to hold the material in a true cylindricai

form and prevent local waving while these soldering

operations were performed. The specimens having
the smallest t/dratiosshowed some initialwaves, due

chieflyto lack of flatnessin the stock from which they

were made; but in the specimens with larger t/d ratio

no departure from true cylindricalform could be de-

tected by the eye or fingers.

The longitudinal seams were lapped about _I inch

and were formed with _ littlesolder as possible.
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There is no theoretical reason why such a seam should
have an appreciable effect in this type of loading.
Buckling deflections seemed to occur across seams as
freely as anywhere, so the stiffening effect of the double
thicknem at the seam was probably negligible in all
cases except possibly for the few tubes which were only
_6 inch in diameter. For these tubes an attempt was
made to correct as much as possible for this stiffening
effect by taking the thickness as the total cross-section-
al area of the tube wall divided by the circumference.

The end conditions of the tubes were as shown in

figure 5. The medium length tubes (6 to 30 inches
long) were soldered to heavy end plates as shown at
(a). Heat was applied only to the end plates and care

.l.oose _/tffn_, ring

Y_ba

,S_tlx_

. O_k$

(b)

Er_ #/_ of
f_ting m_hine

5/'/6." ro_ ...rube

{c) (d)

F_Ull ,_.-- Kd_ c'_mdit km_ o( t_t s_.'utm.

was taken to heat them symmetrically to avoid produc-
ing initial strains in the tube. The loose ring shown in
the figure fitted the tube just closely enough to keep
the tube cylindrical during the soldering. .ks there
was always a certain amount of clearance between the
ring and the tube wall and buckling deflections were
not appreciable at a distance from the end many times
the width of the ring (see fig. 6), the effect of the ring
on the end conditions was ne_ected and the distance

between the end plates was taken as the length of the
tubes.

Several extremely short specimens were made, to
test the theory at small values of/-/. .ksboth theory
and common sense indicate the greater importance of

COMMrI'rEE FOR AERONAT]TICS

end conditions for such a case, great care was taken to
obtain definite end conditions. One side of a strip of
material _ inch wider than the desired tube length was
tinned on one side with a very thin coating of solder•
The mechanical properties of similar sheet material
were measured after tinning and found to be the same
as before tinning, as nearly as could be determined.
Two disks were turned the size of the desired tube,
their edges were thinly tinned, the tinned strip was
tightly clamped around them as shown in figure 5 (b),
and the whole heated so as to sweat the tube to the

disks. Examination after testing showed a perfect
joint between the tube and the disks right up to the
edges of the disks.

The _6-inch-4iameter tubes were merely sweated
over the end of a steel rod as shown in figure 5 (c)•
The 27-inch tube had bolted joints, and its ends were
embedded in concrete, held between steel hoops, as
shown at (d). The Ltoops were clamped to the heavy
end plates of the testing machine, and the length of
the tube was measured as shown.

The medium and very short specimens were tested
on the special testing machine shown in figure 6.

a F

I-....... t

• l_OVll 7.--Dta_rammatl¢ top VllW of tonl|oo-b_nd/n_-ecmprt._sion t_¢i_g _hloQ.

This machine is capable of testing specimens in torsion,
uniform or varying bending, and axial compression,
separately or in any combination. The three types of
loadareappliedby threeconvenientlylocatedcranks,

and the load applicationisextremelysmooth. The
load isread directlyin inch-poundsand pounds, on

threedialgages. These dialgages measure the de-
flectionsof cantileverspringswhich are designedin
such a way as to eliminatepracticallyallhysteresis

and areartificiallyaged. Provisionismade foradjust-
ing the positionof the dialgages lengthwiseof the

springsso that,incalibrating,a positioncan be found
at which they read the loads directly.

The principle of the machine is shown by the dia-
grammatic top view (fig. 7). The specimen is attached
to two L-shaped members abc and de/ which are
balanced on practically frictionless universal joints at
b and e. The ends of the specimen are therefore free
to rotate in any direction. When a.,dal loads are used
they are applied through these universal ioints and
this insures a definite line of action of the load. The

specimen is subjected to bending by applying down-
ward forces at d and ¢; these forces are applied through

..'.
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which extend down to a cross bar dc under the

specimen. A crank is used to press down on a ful-
crum mounted on the bar dc; the crank and fulcrum

are movable along the length of dc, and in this way
the ratio between the forces at d and c, and therefore

the bending moments at the two ends of the specimen,

can be varied at will. Torsion is applied to the speci-

men by pulling down on f through a wire, by means of
a crank; the point a is prevented from vertical (but
not from horizontal) motion by vertical wires. Axial

load is applied by moving point b to the left with a

joint takes loads in two directions, a_lows rotation in
any direction with almost no friction, and is extremely

cheap and satisfactory. The whole testing machine

is built of structural shapes, assembled largely by

welding, with a minimum of machining. It cost very.
little to build and has proved very satisfactory and

convenient to use.

The 27Anch diameter specimen was tested on a

special testing machine similar to the one just described

but much larger (fig. 9). No prevision for a_al loading

is made on this machine, and the loads are measured

crank; • is mounted on one of the cantilever springs
and thus the axial load is measured. The arms bc and

ab are in themselves cantilever springs and their de-

flection measures the bending and torsion moments

respectively. The dial gages which measure the de-
flections of the springs are mounted on unstr'-=_d arms.

The universal joints at b and • are of the type shown
in figure 8a, consieting only of a spherical cup, a central

ball and six loose balls (the weight of the member abc

or def issufficientto keep the hallsin position). This

by the lateral deflection of tension members that axe
initially bent, which permits the measurement of very

large forces with a light measuring device. This ma-

chine takes specimeas up to 3 feet in diameter and 15
fast in length, and has a capacity of 500,000 inch-

pounds in bending and in tordon.
The _0oinch diameter specimens, used to test the

theory for long slender tubes, were loaded as shown in
figure 10. Toshaped pieces were attached to the ends

of the specimen. The_ were balanced on a knife-edgc
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wires which extend down to a cross bar dc under the

specimen. A crank is used to press down on a ful-
crum mounted on the bar dc; the crank and fulcrum

are movable along the length of dc, and in this way
the ratio between the forces at d and c, and therefore

the bending moments at the two ends of the specimen,

can be varied at will. Torsion is applied to the speci-

men by pulling down on f through a wire, by means of
a crank; the point a is prevented from vertical (but

not from horizontal) motion by vertical wires. Axial
load is applied by moving point b to the left with a

9

joint takes loads in two directions, allows rotation in
any direction with almost no friction, and is extremely

cheap and satisfactory. The whole testing machine

is built of structural shapes, assembled largely by

welds, with a minimum of machining. It cost very.
little to build and has proved very satisfactory, and
convenient to use.

The 27-inch diameter specimen was tested on a

special testing machine similar to the one just described
but much larger (fig. 9). N o provision for axial loading
is made on this machine, and the loads are measured

1

i

lr

crank; e is mounted on one of the cantilever springs
and thus the axial load is measured. The arms bc and

ab are in themselves cantilever springs and their de-
flection measuree the bending and tormon moments

respectively. The dial gages which measure the de*
fleetious of the springs are mounted on unstressed arms.

The universal joints at b and • are of the type shown

in/igure 8a, con_i_tiug only of a _pherical cup, a central

hall and six loose balls (the weight of the member abc

or def is sufficient to keep the bn,Usin position). This

by the lateral deflection of tension members that are

initially bent, which permits the measurement of very

large forces with a light measuring device. This ma-

chine takes specimens up to 3 feet in diameter and 15
feet in length, and has a capacity of 500,000 inch-

pounds in bending and in torsion.
The _0-inch diameter specimens, used to test the

theory, for long slender tubes, were loaded as shown in
figure 10. T-shaped pieces were attached to the ends
of the .qpecimen. The_ w_re b_lanc_d nn a knife-edgc
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at one end and on a loosevertical'_tripat the other, so
that the ends of the specimen were freeto rotate in

any dizectionor to approach each other (as w_s alsothe

case with the testing machines previously described).

The long arm of the T at one end was held down with

a string,while weights were applied to the other until

buckling occurred, as shown in the figure.
The wall thickness of the specimens being so small,

it was nece_ary to measure it with much more than

common accuracy. The instrument shown in figure!I

COMMrPI_E FOR AERONAUTICS

which surrounds the anvil. Such provisions are neces-

sary to measure the thickness of thin material accu-

rately. The sheetmust alsobe very clean,as p_rticles

of dust or filmsof dirtcauses appreciable errors;itwas

found advisable to wet the sheet with alcohol during

the measuring. In spite of such precautions, the
errorsin the measurement of t and in the variation in

the thickness at differentparts of the sheet undoubt-

edly cause a largepart of the scatterin the finalresults.

The variation in thickness over a tube was usually

¢

Lood

/"

Ca) <b)

F1O_ZZ $.--B_I untvomLI |oin_ mind in the t_tin| m_"htnes (b, tYl_ used. on _ mMbUw f_r vq_'_l_l toads only, _._n.b_ m.p_tty $,000 |b.)

was therefore constructed; it i_ 10 times as sensitive

as an ordinary micrometer and proved to be much
more accurate and convenient. It eonskte of a verti-

cally mounted dial gage reading in 0.01 mm (.00039 in.)
and having _n extr_ strong spring and _ very -mooth

contact point, so that a sheet can be moved under it

smoothly. Directly under the contact point of the

gage an adjustable rounded anvil projects slightly

above the flatbedplate of the machine. The sheet is

pressed down on thisanvil by a spring-actuated ring

about 5 percent. As torsion failure occurs over most

of the tube at once, the average thickness was recorded.
The modulus of elasticity of the material of the tubes

was memmred by the special testing machines shown

in figure12. The one shown at (a)isa tensilemachine

with a capacity of 130 pounds. The forceis measured

by the calibrated spring at the top, the dim reading

directly in tenths of a pound. The specimens used

axe plainstraightstripsi inch wide. They are clamped

in ordinary straightjaws linedwith emery cloth; such



I

STABILITY OF THIN-WKLLED TUBES UNDER

thin materials are easily held by friction alone. As

the machine is frequently used to determine elastic

limits, provision is made to insure perfectly central
loading. The extensometer shown involves a detach-
able Huggenberger instrument mounted on a special

frame, with provisions for clamping to thin sheet and

TO_ON 11

It was feared tha_'the physical properties of such

chin, highly cold-worked material might vary along

the thickness. In order to test this, the machine shown

in figure 12 (b) was designed to test strips of the ma-
terial in bending. The strips are first coiled somewhat

like a watch spring and tested in this form; this feature q

]f_lO'gll 1L--1'nakflDNm tASI_. ° "

for preventing all motions but the desired one; it is is necessary to insure straight cross sections. The ma-

balanced to prevent bending the specimen, and its chine exerts a pure couple on the coil, bending it uni-
weight is allowed for by,he proper initial setting of the formly through its length, and measures _he total

load dial. It reads directly in I/I00,000 unit strain angle of bending. Very consistent results can be
and can be read consistently to one tenth of this value obtained, o_ the width of the strip is several hundred
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times the thickness, this machine of course measures

E/(1-_2), while the tension machine measures E.

Assuming _-0.3 the values of E obtained from the

two machines are found to check within 1 or 2 percent,

and are very consistent for each type of material.

Data for all the tests are given in table I. In all

cases the torque given is the maximum torque thaC

the tube will take. In most cases, this ultimate torque
was very sharply defined and occurred when the buck-
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the circumference divided by the aveluge width of the
circumferential waves. The value of # was estimated

roughly by eye, with the aid of a transparent protrac-

tor, from the appearance of the top or outermost part
of the wave. The angle of the top aud bottom of the

wave must be the same when buckling starts but, as
buckling increases, the angle at the bottom of the

wave becomes greatly distorted, while the angle at the
top seems to remain nearly constant.

-e

ling deflection was comparatively small. In the case

of the few extremely short tubes, however, the torque

increased gradually for a long time after buckling
started, the maximum value being reached when the

buckling deflections were very deep. This seems to
indicate that for such extremely short tubes, while the

present theory presumably gives a correct value for
the torque at which buckling would start if there were
no eccentricities, the v_mate torque which the tube

will take is probably to some extent a function of the

elastic limit or yield point of the material. In the

specimens tested, the strengthening effect of large de-

flections evidently counterbalanced to a great extent
the weakening effect of initial eccentricities.

In many tests, buckling occurred only part way
around the tube, and in these cases n was taken as

Ffc_cmi IZ--Tewile and beading _ t4mtlng appm'-_._

In plotting the experimental results, _ is assumed

to be 0.3 for metal tubes,0.36 for celluloid,and 0.5 for
rubber models.

DERIVATION OF THE EQUATIONS OF EQUILIBRIUM
OF A CYLINDER WALL

The equations of equilibrium of elements of the
cylindrical wall of the tube have been obtained in a

new and simp_ied form; consequently it will be neces-

sary to give a derivation. Figure 13 shows the coordi-

nates and the components of displacement of the middle

surface of the wall during buckling. A circumferen-

tial coordinate s is used in preference to an angular one,
because it results in simpler expressions and makes the

connection between a curved plate and the limiting

ease of a flat plate more readily seen. It will be shown
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that, to the order of approximation which we need, it
makes no difference whether the component of dis-

placement v is considered to be measured circumfer-

entiMly or tangentially.

The equations of equilibrium for a fiat plate axe
well known, but the corresponding equations for the
case of a curved plate are by no means so clearly

established. In the case of a fiat plate, in some prob-
lems only extensional strains or stresses--tension,

compression, or shear in the plane of the plate--need
be considered, while in other problems only flexure--

bending or twisting--is of any importance. Extension
and flexure may be considered separately, even in the

case of a complex problem involving both; an excep-
tion to this is the case where large deflections occur
to a non-developable surface. In the case of a curved

plate, extension and flexure are, in general, intercon-
nected even when the lateral deflections are of infi-

ni_al order. If no simplifications were made the
conditions of equilibrium would be too complex to be

p (d/_l_:.¢ ,:_.t/f.,'on)

l_Qm ]&_ _ _mpo_m _ dJa_

of much practical use..*vfuch confusion seenm to exist
as to what simplifications can be made, and the con-

difions under which they can be made. One author
considers items which another rejects as negligible,
and vica versa. An attempt is made, in the following

diectumion, to clarify this question and to obtain the

grcatmt simplification pemible, under the conditions
of the present problem; the rmults are applicable to a

large clam of problems.
The usual ammmptions are made, that the material

is perfectly elastic, that the tube is exactly cylindrical,
that the wall thicknees is small compared to the radius,
and that the deflections are small compared to the

thicknsm. The usual amumption is also made that
straight lines in the cyl/mier wall, perpendicular to the

middle surface, remain straight and perpendicular to
the middle surface; that is, we neglect the distortion

due to transverse shear. We could easily justify this

assumption by taking the magnitude of the transverse
shear, obtained on this assumption, as a first approxi-

mation and calculating a correction. The correction

will be found to be negligible.
If lines perpendicular to the middle surface remain

so during distortion then the displacement of a/l

points in the cylinder wall can be found from the
displacements of the middle surface _, v, and w. The
equations of equilibrium can then be derived in terms

of u, v, and w by considering: first, the purely geo-

metrical relationship between these displacements and
the strains in all parts of the wall; next, the relation-

ship between the straum and the stresses, given by

Hooke's and Poisson's relations; and last, the rela-

tionship between all the stresses on an element of the
wall, given by the laws of equilibrium. There is no

essential difficulty in doing this. However, as the
contention to be made is that most writers consider

more items than necessary, it will be sufficient to take

their results and show what can be neglected.
Let us consider first the items that all authorities

agree cannot be neglected. The extensional and flex-
ural strains in the middle surface are

,,-_,,, _7+_,,,,-57+_

(5)
5_ 52w 52w

_''_' _'-_' _"" _zas

These expressions are the same as the well-known
expressions for the case of a fiat plate, with the addi-
tion of w/r to the expression for e,. This term is due

to the change in circumferential dimensions with

change in the radius, which produces the strain:

r+----Tw-l- _w
;" r

The resultant forces and moments per unit length
of wall section, obtained by summing up the stresses

over the thickness, are taken as shown in figure 14.
The relation between these and the strains of the
middle surface will be taken the same as in the case

of a fiat plate:

- _ (" + _,,,),
Et

T.
_ 7",- :---:-2 (" + _")'

Et Et'

T. - T.'-_,.,, a.- (_.+_,,), (s)12(l --_?)

G - EP EP

We will now set up the conditions for equilibrium of
an element such as shown in figure 14. Before doing

this we must remember that we have taken s, v, and w

as the displacements occurring during buckling, and

hence the above quantities T_, G,, etc., represent only

the changes in the internal forces during buckling. The

total internal forces at any instant axe the internal

forces present before buckling, plus these changes.
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In the particular problem that we axe considering, the
tube is subjected to torsion and, if the tube is per-
fectly cylindrical and uniform, the stress distribution
and the distortion will be, before buckling begins, the
same as assumed in elementary mechanics. There will
be a shearing stress S on normal and longitudinal
sections, which can be taken as uniform throughout
the entire tube, since t/r is small. There will be a
simple distortion in the circumferential direction,
which leaves the tube still cylindrical and is of no
interest to us. To obtain the total internal forces we

must add to those shown in figure 14, the forces per
unit length St, which will be considered to be in the
opposite sense to T_, and T,,'.

In setting up the conditions of equilibrium of the
element we must take into consideration the changes
in the angles of its faces due to its distortion, as this
will obviously affect the components of the forces in
the different equilibrium equations. However, if the
displacements are small this effect will be small, and
its effect on T:, G,, etc., is of a second order of small-
ness compared to other items. But its effect on St

F_om_t 1,4.--Forum mad moment, on it_t of will

may be of the same order of magnitude as these other
items, because St is an order of magnitude larger than
T_, G,, etc.; the latter forces are proportional to the
buckling displacements and when these displacements
are small, T,, G,, etc., must be small compared to St,
which had a finite value when the buckling started.

The terms which we will consider in the equations
of equilibrium give, after simplification

,,_ _SN, aN, T, o-(]_
-,,_ -_- +_ +7 +-_t_-o (r)

=_M, . _--_G_---'+ _-_" - N. - O

ha, _O,,' .
:M.--_ +-_---_,= o

There is no use in writing the equation of moments
about the radial direction, as it would merely state
what we have already assumed--that T,,-T,,'.
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The term Ydr in the third equation comes from the
resultant of the force T, dz and the similar force on

the opposite face of the element, due to the angle
ds/r between them; this is the only term we will con-
sider due to this angle, that is, due to the c_rvahtre
of the element; all the other terms in (7) are the

same as for a fiat plate. The term 2St _ is the

only term considered due to the distortion of the ele-
ment; this is the resultant of forces Std_z or Stds on all

i four sides of the element, due to the angle of twist
b_ b'w

i between opposite sides, _----_ dz or _8 ds. The rest

of the terms in (7) axe due to changes in T,, G,, etc.,
I over the distances dx or ds, and to obvious moments

I due to N, and .V, the same as for a flat plate.
Using the last two equations to eliminate .V, and

N, from the third, replacing T,, G,, etc., by their
values in (6), and then ,,, x,, etc., by their values in
(5), we obtain three equations involving: derivatives
of u, v, and w with respect to z and s, the unknown S,
and the physical constants of the tube

. 2 _s+_ -0

_'v t-_,_,, 1+_, b'-s v_l_w 0

t'V_w I/_)v Ou

where Va _)' + _,
--_-_ _l and V' signifies that this opera-

tor is to be applied twice.
Equations (8) can be simplified as follows: Apply-

ing first _-_ and then _ to the first equation, solving

in each case for the term involving v, and substituting
these expressions in the equation obtained by applying

to the second equation, we obtain an equation

from which o has been eliminated. Similarly, apply-

ing_ and _'ito thesecondequation,solvingforthe

term involvingu, and substitutingin the firstequa°

tion,afterapplying_ toit,we obtainan equation

from which u has been eliminated.These equations
are,aftersimplification:

Vw (9)
rv_ = - (2 +,) _ _s_

Now, applying _-- to the first of these equations and

to the second,and substitutingin the equation

obtainedby applyingV'to the thirdequationof(8),
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we obtain an equation from which both _ and v have
been eliminated:

EP v,w+_ ?)'w _ { 5_ _._+.s_\a76;/ o (IO)12 (I----_')

Equation (I0) is the same as the corresponding

equation for a fiat plate, with the exception of the
second term; this is evident if we set r infinite in (10).

The contention being made is that this term repre-
sents the principal effect of the curvature in a large

class of problems of which the present problem is one.
For most problems, equation (10) represents the com-

plete equilibrium condition. However, if it is desired
to include constraints agains_ _ and _ displacements in

the boundary conditions (as will lye done here), rela-
tions (9) must be used for this purpose; this, of course,

constitutes another effect of the curvature, but it will

be a very small effect in most cases.

In using these simplified results for other problems,
it is only necessary to remember that the last term

of equation (I0) represents the radial force on the
cylinder wall due to the loading, per unit area of the.

wall, to which the operator _ is applied. Thus for
the problem of the buckling of a cylinder wAU under

axial compressive stresses, So (due to an a:dal load or

due to bending), equations (9) and (10) will be as
above except that the last term of (10) will be tV'

(s° Foratubeunderav ng e te al pressure

p, this last term will be v'p (but if p is constant with

respect to s, or varies very gradually, then the above
equations may be no longer applicable, as will be ex-

plained later). For studying lateral vibrations of the
cylinder wall, the last term of (I0) will be rn_, where m

is the mass per unit area and _ is the second derivative
of w with respect to time.

It is necessary now to justify the neglect, in deriving

(9) and (10), of many items which are commonly con-
sidered. In the relations between strains and dis-

placements (5), we neglected, in the expression for

• ,, a term _ w, due to change of curvature with change

of radius. H v is measured tangentially the expres-
sion for _, should logically include also the term

15_.
_)s' if o is measured circumferenrially this is unneces-

sary, but _,, should have an additional term_ _.

As for expressions (6) for the internal forces and

moments in terms of the strains of the middle surface,

we have obviously neglected the effect of the varia-

tion in the length of circumferential fibers along the

thickn_. Love (reference 9) gives a second approxi-
marion for the internal forces, in which the expresaions

for G,, G,, G,, and G,' are the same as in (6), but the

15

expressions for T,, iv',, T,,,and T_,' contain a number

of additional terms involving the flexur_ strains

•,, _,, and _,,. In these expressions Y,, and T_,'

are no longer equal, but have values satisfying a more

exact statement of the equation of equilibrium of
moments on an element, about the radial direction.

In setting up the equilibrium conditions (7), many
terms were neglected. It has been noted that the

term TJr in the third equation comes from the re-

sultant of the T, forces on opposite faces of the ele-

ment, due to the angle ds/r between these faces. By
the same reasoning, there should logically be a term

N,/r in the second equation, and a term G,,'/r in the
equation of equilibrium of moments about the radial

direction, as noted in the last paragraph. The term
_2w

2St_--_] in the third equation represents the radial

components of St forces on opposite faces of the ele.-

ment, due to the angle _ dz or _-_ ds between

them. There are other small angles between the St

forces on the opposite faces, produced by dhtortion of
the element, and these give resultants in the z and s

directions; these are considered by Schwerin (reference

5) in his solution of the torsion problem.
The justification for neglecting all these items lles in

the following: If any, or all, of them are included, we
obtain finally an equation corresponding to (10), which
includes all the terms in (10) and numerous _tdditional

terms. Now suppose we take _ as a harmonic func-

tion of s, such as the expression (13), _ven later, for
which n represents the number of circumferential

waves of the displacement, and substitute it in this

equation. If we compare the two types of terms which

we obtain--those which we would get with (10) and the
additional terms---we find that each of the additional

terms is equal to a term we get with (10) multiplied
by (t/r) 2 or 1/n 2, and with some numerical factor of

the order of unity. Those involving (t/r) 2 can be im-

mediately thrown out, for any "thin-walled" cylinder.
Those involving I/n 2 can evidently be neglected when

is large. This means that (10) is applicable in all
thin-wall problems in which the deformation consists
of a large number of 'waves in the circumferential

direction, or in which it changes rapidly in this direc-
tion.

It is an interesting fact that a simple test e._dsts for

differentiating between items which can be neglected

on the above basis and those which cannot be, in the

expressions for ,,, _,, etc., for T,, G,, etc., or in the

equilibrium equations. If we make the substitution

u - ,_'t_ u', v- _/r _', z- -_'_ x', _ = _r s' and divide

all the ite_ns by the proper factor, we find that items

which can be neglected are left with a factor t/r, while

the other items are free from such a factor. For



16

example, suppose we wish to compare the items in the

expremion
5Zw.l .1_

._v_sk/ng the above substitution, we find

1/b_ t , t bv'\

The meaning of this is probably that, for the class of
problems to which (10) applies, u and _ are of the

of magnitude of _/t w.order

One more question requiring discussion is that of

how large n must be in order for (I0) to give a reason-
ably accurate result. In the preseut problem the

results obtained from (10) give an excellent check with
experiments when n is only 2. (See fig. 2.) More-

over, the results seem to check reasonably with those

of Schwerin, who used a number of the items neglected

in (10), indicating that these items were of minor

importance even when n-2. On the other hand,

the results obtained from (10) give an entirely dis-
torted result when n- 1. There seems to be a rather

critical change between _-1 and n-2, for our par-
titular problem at least.

It is no inconvenience to us that (10) is inapplicable
when n-1, because for this case the cross section of

the tube is entirely undistorted, merely undergoing a

general displacement. The elementary theory of
bending of a tube evidently applies in such a case, and

there would hardly be any advantage in having a

complex solution for a case to which elementary theory
applies. However, borderline problems doubtless exist
for which neither (10) nor an elementary treatment

would be accurate. It cannot be concluded, however,

that the equations of equilibrium commonly used,

which take into consideration some of the items neg-

lected in (I0) but not all of them, will necessarily be
more accurate in such a case than (10). Unless the
equations of equilibrium take a//such items into con°
sideration they may quite possibly be less accurate
than (10), rather than more accurate.

THE BOUNDARY CONDITIONS

There are only two boundary lines to a tube (the
two ends), instead of the four which we have in rec-

tangular plate problems. The boundary conditions
which we would have for the lateral sides of a plate or for

the edges of the split in the case of a split tube are
replaced in the case of a complete tube by the condi-

tion that the displacements must be cyclical functions
of s, with the cycle length ,_/.

We will consider two edge conditions at the ends.

For the case of clamped edges we will assume all com-
ponents of displacement, and the slope of the surface

in the axial direction, to be zero. There must, of
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course, be a uniform circumferential displacement for
at least one end while the torsion is being applied and
before buckling takes place. However, we are con-

sidering only what takes place d_'in9 b_cklin 9. We
will find that our equations can be satisfied with S a

constant, which means that S, and therefore the torque

on the tube, remains constant during the buckling.
There is therefore no reason for any relative circum-

ferential displacement of the ends while buckling takes

place, and the conditions for fixed edges are

z ,
z- ±a: _t=v='v'_)z= (lt)

Similarly, the condition for hinged edges at the ends
is that the components of displacement and the mo-

ment Gz are zero:

z 5"w . _v_
z=±_:. ,zffiv_-w-b--E_-_ z 0 (12)

Both of the above end conditions evidently require,

not only that the edges el the tube shall be clamped
or hinged, say to some rigid end piece, but that the ends

a_ a who/e shall have no linear or angular motion relative
to each other. However, if we take the final results
obtained, and calculate the resultant of all the forces

on the end of the tube due to buckling, (that is, the

T:,, _V,, G_, and G,,, when z-_ orresultant of T,,

z- --_) we findthisresultantto be zero. This means

that no constraints are required to prevent motion of

the ends of the tube as a whole; that is,it makes no

differencewhether or not they are free to move as a

whole (thisdops not apply to the case n- t, which is

discussedtater).
THE SOLUTION

The equations of equilibrium and the boundary con-
ditions are satisfied if u- v =- w- 0--an obvious solu-

tion of no interest to us. Buckling displacements are
otAer types of displacement which satisfy these condi-

tions. There are many such displacements and each
one requires a certain definite value of S. Our prob-

lem isto find the lowest of such values of S for each

given tube; buckling willcertainly take place as soon

as S exceeds thisvalue. In the present problem the
equilibrium and boundary conditions can be satisfied

if 8 is a constant with respect to the displacements,

and the displacements are the following functions of
z and s:
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where U,, V., W,, and n are real numbers, n being

an integer, and X, may be complex. Substituting

these values in (9) and (10),we obtain

. / X.\ 2

(14)

1 -+-(2 -+.-..) (-_)'
V. W.

,,
H 3

The summation signs have been dropped. If these

equations are satisfiedwithout the summation signs,

they willcertainlybe satisfiedwith them.

If we now substitute (13) and (14) in the eight

boundary, conditions (ii) or (12), and eliminate s

from these equations in a similar manner to that used

later,we obtain eight linearequations in Wt, W:, W3,

etc. As there are no terms not containing _V,, it will

take eight values of W_,, which means eight terms in

the sununations of (13),as wellas a determinantal rela-

tion, to satisfy them. This determinantal equation

involves tileeight vahles of X.,. As (15) is of eighth

degree in X_, for a given set of values of k, H, and .4,

),,,may have in general eightdifferentvalues. It can

easilybe shown that under theseconditionsthe determi-

nantal equation and (15) together determine arelation

between k, H, and A. The problem is to determine

thisrelationship;it isnot impossible to do it,but the

algebraic complexities of the problem render it im-

practicable.

We willthereforemake certainminor approximations

that willmake the problem more tractable. The re-

sultsof experiments give the clue for doing this. It

X.,d M,
is evident from (13) that _ - _- is the tangent of the

angle of deflection waves with the axial direction.

From the theory of Southwell and Skan (reference 6)

and from experiments, we -know that the "angle 0 starts

at about 45 ° for infinitely short cylinde.rs and rapidly

decreases as the length increases, being about 15 ° when

tile length equals the diameter, and evidently approach-

ing zero at very large length/diameter ratios (of course,

we will show that 0 is a function of H, rather than of

l/d, but the foregoing statement is justified by the fact

that d/t has a practical lower limit determined by the
elastic limit of available materials).

This indicates that, for all except very short tubes,

x../k is small compared to 1. Of course, the actual

deformation is a superposition of eight deformations,

each with a different value of _.,/k; some of the values

of X.,]k may not be small, but experiments as well as

the following theory show that the important values of

h,,/k are certainly small, except when l/d is small.

We are also quite safe in assuming that h,/k approaches

zero for large values of l/d, as this assumption certainly

gives a good first approximation, and this first appro.,d-

mation vertifies the assumption.

These facts axe the basis for the approximations

which we will use. Starting with (14), if we neglect

"--'_-Ak-'-)'in comparison to 1, we obtain

W, ),.,
U.- n k

(t6)

l',,= W.
n

The error introdut.edby thisapproxhnation iszero at

both extremes, when lid is infinite,and also when

//d=0---because both U,, and V., are then zero any-

way, since n becomes infinite.The error is.small for

any intermediate case because when X,/k is not small

compared to I, _ is largeand _r and V, are of little

importance. For example, when I/d-1, taking

)_,/k=tan 15°,the errorin V, isabout 3 percent, and

in U, (which is much lessinlportant than V=, as it

contains the factor k.dTc)about 14 percent. Moreover,
investigationof the finalresultsshows that U_, isnever

of any particular importance, and even V= is not

important here, only becoming of importance when l

islarge compared to d.

Substituting (13) and (16) in (11) or (12), and

dividing through by common factors, we find, for
l

z- ±_:

,,_o.=,v.++,,
(, ) +o,+,++,+,w_0: _W.. cos _r ± k,, -0 conditions)

u-O: _W.X. sin (.n _ ± X.) = {, (17)

edges)

G,-O: _ W,X,' cos (a-st ± X,)- 0 (hinged edges)

We will negiect the third condition for hinged edges,

that s-=0. This is by far the least important of the

four conditions, owing to the relative insignificance of

U,,, as mentioned before. NegLecting thiscondition,

and using the trigonometric formulas for the sinesand

cosines of the sum of two numbers, we obtain

I
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sin n_(._W_ cos X_)

-_cos _ _ (_IV. sin X,.) =0

(both edge conditions)

sin '_7 (2;I_. sin X=)

n -s (._W. cos x.,) =0
4- COS r

sin n2r ('2W,,X,. cos X,.) /

= cos n s (.W,,X,, sin X,,) =ol(clampeds
edges)

• .9 _ . /sm a r (. W.Xj sm X.)

?(hinged edges)
± cos ,__ (_ W.,X. -_cos x_,) ffi0

All these conditions will be satisfied if

._ IV. sin X,. ffi0

X IV. cos X. = 0 (clamped edges)
_W_X.. cos X==0
-_W.X. sin X.=0

(18)
x W.. sin X. = 0

XW. cos M. = 0 (hinged edges)
X IV,mX,m2COSX,,t= 0
XW..X. 2 sin X.=0

These four equations for each end condition can be
satisfied by four values of W., that is four terms to
the summations of (13), and a determinantal relation-

. ship involving the X=s. The conditions (18) are the
same as the boundary, conditions found by Southwell
and Skan (reference 8) for the case l/d=O. These
writers show that the determinantal relationships
between the X.s, implied by (18), can be put in the
following forms:

(x_- _) (x3- x,)"sin (x,- x_)
sin (M- XO- (X,- M)(M- X_) (clamped edges)

sin (ht-M) sin (X,-k4)

(Xt-'-M:)(M'- X_:) sin (Xt (19)
- x,) sin (xs- x,) = (x,_
- x,_)(x_'- xS) sin (xt (hinged edges)
- X,) sin (xs- x_)

We will next use the fact that X.lk is small compared
to I (except for small values of l/d) to reduce the equi-
librium equation (15) to one of the fourth degree in
x.,. This can be done in several ways. The most

• • t X,, 2 , ,

a quantity independent of M,, until we obtain a so-
lution. This gives

(k_+3H'_)X.2+2k%.2-6AISX_.+_=O (20)

The error introduced is zero for the extreme cases, when
l/dffi _ (since X_dk=0), and when lid=O, since H=0

for this case. For intermediate cases, a fair first
approximation for the value of A, and therefore of S,
could be expected even if we neglected X./k altogether
in the above quantity, taMng H'=H, because when
the error in neglecting X./k is large, H is small and the
whole second term in (15) is of small importance in
determining A; when this term is important X./k is
small compared to one, and the error is small.

A second approximation for the relation between S
and H is obtained by taking

where X. _ is taken as a weighted average of the four
values found in the first approximation. In figure 1
the relation between A. and H, for clamped edges,
obtained from the first approximation, is shown by the
dotted line, while the second appro:dmation is shown
in full line. The difference between the values of A
or S found from the first and from the second approx-
imation is never more than about 20 percent (and is
much less than this in the range of greatest practical
importance). Hence, if general experience is a safe
guide, the maximum error in the second appro.,dmation
is probably not more than a few percent. This is
borne out by the tests, as the average ratio of experi-
mental to theoretical results is about the same in the
range where the theory, is most uncertain, as it is in the
more certain range.

A further simplification of (15) can be obtained by
completely neglecting (X,dk) _ in comparison to one in
both the first and second terms. Equation (15) then
reduces to

3X._- 6nsBJX. ÷ a'J 2= 0 (22)

This would give a very poor appro.dmation for very
short tubes, but it is an excellent appro_mation for
long tubes for which X,dk is small, and the error
becomes zero when lid= _. Due to the absence of a
term in X,J this equation is much easier to work with
than (20),.and we can obtain most of our results from
it, using (20) only to fill in the theory, for very. short
tubes. The results obtained from (22) are shown in
figure 2, and also give the straight upper portions of the
curves in figure 1. Equation (20) yields the lower
portions of these curves, which approach asymptoti-
cally the straight lines given by (22).

.ks (20) and (22) are of fourth degree in X_,, they are
in general satisfied by four values of x_,, that is, four
roots of the equation, for any given set of values of
k, H, and .4 or n, J, and B. But these four values of
X. must also satisfy the boundary condition (19), and
in general this can only be done if certain relations
exist between k, H, and A or n, J, and B. The prob-
lem is to find these relations; when we have them we
still have the task of selecting the values of a or k which
give the lowest S for any #yen tube, as buckling can
occur when this S is reached.

o
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As the term in X,* is absent in both (20) and (22) we
"know that ;_,+ _ + M- _ = 0. From tile restllts of
SouthweU and Skan (reference 6) we know that for the
case 1/d-O, two of these roots are i-eal, and the other
two complex with the real part negative. Trial shows
this to be true for all values of I/d. We can therefore
express the roots as follows:

ht=a 4-b, _j=a-b, X_= -a+ ;c, h4= -a-iv (23)

where a, b, and c are positive real numbers. The equa-
tion of wlrich these axe the roots is

[X. - (a + b)][k_ - (a- b)][M, - (-a + iv)][X,_-(-a- ic)] =
h,_' -- (2a*+ b"z- ca)_ 2_ 2a (b2+ c_M, + (a2- b2)(,a*"+ _ = 0
Equating the coefficients in this equation to those

in (20) we find the following conditions which must be
satisfied:

2/d
2a" + b2- c: = - k-i-73H,_

3_Mcs
,t(h2+c z)= _ (24)

ks
(a2 - b_)(a2+ d) = k-_ 3H"

or if (22) is used
2aZ+ b_-ca-0

a (b: + c:) = n_BJ (25)

3 (a2- b")(a"_+ c:) ffinsJ _

These three equations from the equilibrium con-
dition (24) or (25), must be solved with a fourth given
by the boundary conditions. This is obtained by
substituting (23) in (19); the results can be put in the
following form:

2bc (clamped
4a2 ="b2- c2+ _ edges)

4a2 - (bz + c2)_ (28)
2be (hinged

b2- ¢_--_-_tart 2b edges)

tanh 2c
where N- cos 4a --_1. Trial shows that 2c

1-cos 2b cosh 2c

7
is never less than 6, and 2b varies between _r and _T,

5
for clamped edges, and between 7r and _T, for hinged

edges, for the lowest range of real solutions for S (real
solutions can also be obtained with values of 2b around

2_r, 3T, etc., but these solutions give much higher
values of S). For such a range of values, we can take
N= 1 without any appreciable error.

Consider now solutions obtained with (25) (which
t,ill apply to all but short tubes). Eliminating a
between (26) and the first equation of (25), mad as-
suming values for b between the Iimita mentioned
above, we solve for the corresponding values of c. This
can be done directly in the case of clamped edges,
as we have a simple quadratic equation in c to work

with; in the case of hinged edges, the wflues of c were
found by a simple _aphical method. The value of ,t
can next be found from the first equation of (25), aml
then the values of n_J_ and ttSBJ from the last two
equations. Table II shows various sets of values of all
these quantities, thus obtained.

From the sets of values of nS,P and n'_BJ we can cal-

culate, for any given value of a (2, 3, 4, etc.) sets of
corresponding values of J, and then B. In this way
were plotted the families of curves, showing the relation
between B and J for n=2, a_-3, etc., in figure 2.
Obviously, only the portion of each curve which is
below the other curves, that is, the portion between
intersections with the adjacent curves, has practical
significance, as buckling will occur at the lowest stress
at which equilibrium in a buckled state can exist.
Hence, the relation between B and J (and therefore
between S and the properties of the tube), wilen buck-
ling occurs, is given by the jagged lines shown in the
figure, made up of the lower portions of the curves for
n=-2, n-3, etc. As indicated on the figure, the inter-
sections of the curves give the values of J at which the
number of circumferential waves will change from one
integer to the next. Thus a clamped edge tube for
which J>1.45 should buckle in two waves; and for
1.45>J>0.35 it should buckle in three waves, etc.
It will be noted that test results are quite consistent
with the theory in this respect.

The relation between nSBJ and nSJ '' can be re[ T
nearly expressed, for the range of values of actu_d
significance, by the formulas: nSBJ is equal to

0.385 (n'J'_) t + .94 (ttsJ:) | + 18. 3 (clamped edges)

0.385 (nsJ_)t+(naJ_)t+6.5 (hinged edges_ 1_27)

The values obtained from these expressions are shown
in table II, in the column next to nSBJ. These rela-
tions can be simplified to

--| 0.94 18.3B-0.385 n,.] +n-_ij_+ a--_j (clamped edges)

B-0.385 nJi+n_t+_6.5 (hinged edges') /) (2S)

These are the equations of the individual curves in
figure 2. For very large values of J, n = 2 and only
the first terms of (28) are important, _ving us equa-
tion (2). This is the equation of the line eef in figure
2, which the curves for n-2 approach asymptotically.
By equating the right-hand side of (28) to the same
expression with n replaced by a+ I, we obtain an
equation for determining the value of J for which the
number of circumferential waves changes from n to
n+l.

It will be noticed that the part of the jagged lines
in figure 2 corresponding to larger values of n approach
closer and closer to the envelopes of all the curves,
shown by the broken lines de. For values of J below

-!
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6 or 7 this envelope can be used instead of the jagged
line without serious error. We can obtain the equa-

tion of this envelope very simply--merely by treating
I_ as though it coldd have any value, fractional as well

as integral. In the last column of table II, values of
ns.P have been raised to the _ power and divided into

corresponding values of n=BJ, giving us values of

_SBJ B

 =Jt

/8 rl ' !1 "_\ i, l tjli: J
/_-- "_ 1 I : I IPI]EJ[ r F _!r_r

n'd" _ '_'11 ' i 11,1 '! ! I..,#'TIltl
: i_i' = .,ill

I • 'l ¢ I t _,',r

• ! ! i i i IJI 
,,. _ _ !iJ I _ _-'tJ_._ I I I1.111

!'! I
/.2 I _ _i i l',I ;[ l J I1t[t

; B/¢ z =/.(_, !,o  lti I* II1
/gO 000 zO,000 I_,0_0

R/J '_
FtGt711 l$.--Plot o! ttlJa _t BlJt/¢

These values have been plotted on figure 15. It will

be seen that the minimum value of B/Jt--and there-

fore the minimum value of B for any given value of

J---occurs when MJ _- 2236 (clamped edges) or nSd-_ -
822 (hinged edges), that is when

rt - 2236i/Jt- 2.62/Jt (clamped edges)_
n-822t/J_-2.31/J_ (hinged edges) J (29)

These minimum values of B/Jt are 1.29 for clamped

edges, and 1.18 for hinged edges. Hence, the mini-
mum B for any given J is

B = 1.29 Jl (clamped edges)_ (30)
B=I.18 jt (hinged edges) J

These axe the equations of the envelopes in figure 2.
Equations (29) give the approximate number of cir-
cunderential waves in which a tube will buckle; if

is taken as an integer, these equations give the inter°

sections of the envelope with the corresponding curve.
These equations can be put in a different form by

multiplying (29) by lid and (30) by ,1-_ 7:

k = 2.62 Ht (clamped edges)

k=2.31 H t (hinged edges)

A = 1.29 Hi (clamped edges)

A ==1.18 HI (hin_d edges)

In this form, they were used to plot the right hand

end of the curves in figuresI and 3.
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We Imve assumed the mininmm number of circum-

ferentialwaves to be two. The case n=0 clearly has

no significancefor the torsion problem, but the case

_=l is not so obvious. This would give a distortion

in which cross sections remain circular but are dis-

placed, the displacement spirallingaround the center

Line,so that the shape of the tube would become some-

thing like that of a corkscrew. Such a displacement

can easily be obtained by twisting a long piece of

rubber tubing in the hands; however, no such distor-

tion has been observed in a thin-walled metal tube,

even in the tube sh,_wn in figure tO. which had _

length/diameter ratio of nearly 171}.

I

"-""_ _/_ _ "'"_" "''_," ""-/--" _ _'r"-"

,

(hi

(c)
FIOUIt_ LB.--The c_ a-t.

:Ls previously explained, the equations of equilib-
rium that we have used do not apply to this case, but

the elementary theory, of bending of a tube does apply.
Figure 16a shows a tube undergoing this type of dis-

tortion, under the action of a twisting moment M,,

the center line being bent to a spiral and having the

constant angle e with the axis of the spiral. If the
couple M_ acts about the a.,ds of the spiral, all parts

of the tube will be subjected to the bending moment

M_ sin e. At the same time it can easily be shown

that all parts of the tube are bent to a cur_ature
sin' elR (where R is the radius of the spiral). This
curvature is in the same plane as the bending moment

M, sin _. Hence all parts of the tube will be in

equilibrium if

sin -_
M, sin _f E1 R

M,=EI_ (a)

If the end conditions are such tha_ sin O/R can have

only one particular value, as in the case discussed ill

the next paragraph, then this formula determines a

value of M_ at which the tube can buckle in the shape
#yen.

It was assumed above that the couple 3I_ is applied

at the axisof the spiral. In a practicalcase itwotild
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naturally be applied at the end of the tube, as shown

in figure 16b. As the couple has only been moved
parallel to itself this is statically equivalent to the

case of figure 16a, and the above reasoning still
applies. But now the couples at the ends of the

tube are not about the line joining the two ends
(shown dotted in the figure). In order to fullfil a
requirement that the end couples be about this line,

the spiral form of the tube must consist of an even
number of fuU turns. The condition for this is that

sin 9 27
-_-=m 7

where m is an integer. Taking rn _. l, as in figure 16c,
and substituting this in (a), we find

2rEI
M,=-- T-

This checks Greenhill's solution (reference 10) and the

loading conditions correspond to those assumed by
Greenhill. However, many other solutions could be

obtained from (a) for other end conditions, and the
special end conditions assumed by Greenhill are no

closer to most practical cases than the others. In
none of these cases could the loading applied be called

a pure twisting moment, as the applied couple is not
about the axis of the tube at the end, as it is for

instance in the actual experiment shown in figure 10.
It would not be worth while, for most practical

purposes, to try to obtain solutions for other end
conditions such as that in figure 10, because a little

figuring indicates that this type of buckling can never
be of importance with metal tubes. In the last

analysis such a buckling merely amounts to a change

of a component of the twisting moment into bending
moment. The resulting deflections could never be as

great as the bending deflections which would occur

if the whole twisting moment were to be applied as a
bending moment. In the case of a long piece of rubber
tubing, enormous angles of twist can be obtained.

This dsformation is not especially apparent, as it

leaves the tube cylindrical as before; if, now, some of
this twisting deformation suddenly goes into bend-

ing deformation, the resulting deformation is very
spectacular, even if the angles of bending are only a
small part of the previous angles of twist. In the

case of the steel tube shown in figure 10, which is

about as extreme as any practical case could be, the

torque at which buckling occurred would only have
caused a deflection of 1 inch in the middle of the

53-inch span, if it had all been applied as a bending
moment. It is evident that the occurrence of a frac-

tion of this deflection due to a spiral deformation would
not even be noticeable.

Returning to the cases where n>l, the shape of
buckling deflection can be found as follows: From the

values of a, b, and ¢ which have been determined, the

values of X_, X_, X_, X4 are found from (23). Putting

these in any three of the four equations of (18), we

solve these equations simultaneously for Wa, W3, and

W, in terms of Wt. Using these values, the value of a

(obtained as elsewhere discussed) and (16),in (13),we

obtain the desired expressions for u, v,and _. These

ex'pressionscontain an indeterminate factor W, which

is to be e.xpected,as the absolute magnitude of the

displacement isindeterminate. These calculationscan

be made from the resultsobtained laterforshort tubes,

as well as from the resultsalready obtained for long

tubes. However, as the work of solvingequations _1S)

simultaneously is quite laborious,it has been carried

out for only one case,that of long clamped edge tubes;

the result should apply with sufficientaccuracy to

most of the experiments and to most practicalappli-
cations. Using the values of b, c, and a from the

fourth lineof table II, we find,for long clamped edge
tubes

[w=[I," t cos n r '

-0.00054 sinh 12.06 7 sin n --S.21}
/.

-o., olr2 ,.osh Z

-al w' [ in ( *i,)

+1.301 sin _7+4.86 (31)

I o I'

u

oo,
+0.o o 

where ,_ is given by figure 2 or equation (29).

The results found so far were obtained from (25) and

axe not accurate for short tubes. To obtain a solution

from (24) and (26) is much more difficult. Particular

solutions were found as follows: Values of b and c axe

assumed, and the value of a found from (26). The

value of k is then found from an equation obtained by

dividing the third by the first equation of (24); H' is
now found from the first and then A from the second

equation of (24).

The value of I-/is now computed from (21). This

requires the selectionof a weighted average value for

),_. For thispurpose three solutionsfor the shape of

11.54 _)+ 1.301 c,*s (n _+4.86-_)

,I
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the buckling deflection are available, the one above for
the case l/d- _ (clamped edges), and solutions for the
case l/dsO for both edge conditions, given by South-
well and $kan (reference 6). In all these solutions the
first two terms involve Xzand _, respectively, and the
last two terms involve X3and M. These last two terms

are much smaller than the first two. In figure 17 the

-H
gg

i t! ,
F

.4 I

_,.-s-ofh,,.,_ eo_.j i j
:\_ _ I I , i I I /.

_ \ \l.--u,..o _:/o,_ _oj //
' I I _ I I

-.5 -.,¢ -.3 -.,_ "_/ 0 ./ .g .3 .4 .J
z/t

FlfO'lttt tT.--Ch_t show(Ill relative un/mpm'tanco of _ and M.

ratio of the average absolute magnitudes of the last
two terms, to the average absolute magnitudes of the
first two, is plotted against x/l. It will be seen that
the last two terms are very unimportant compared to
the first two, and hence Xs and X, are unimportant,
compared" to k, and k2. Comparison of the terms con-
taining _t and _ shows that these are of the same
order of magnitude for all of these extreme cases.
Equation (21) was therefore taken as

.- H'(, +_')-H'(, +_)

This is of course rather a rough correction, but it may
be considered to be applied, not to the whole solution
for .4 or S, but to the error in the first approximation,
as previously discussed.

We now have corresponding values of .4 and H,
satisfying the equations of equilibrium and the bound-
ary conditions. However, the original choice of b and
c was purely guesswork, and with different values of b
and c we may obtain higher or lower values of A, and
therefore of S, for the same value of H. For these
higher or lower values of S there will correspond eero
taln values of k and therefore of n. We know that the
actual value of n will be that giving the lowest value of
S consistent with equilibrium and boundary conditions.
It is therefore clear that the smallest values we can

find for A in terms of H by the above process will be
the correct values.

If we had to try values of b and c blindly, the work
would be very. difficult, as only a small range of values
even result in real values for a, k, A, and H. However,
we already know the values of b and c for the extreme
cases when H-0 and H I _, given by $outhwell and
Skan, and the previous solution obtained from (25).
These sets of values of b and c are represented by the
points p and _, figure 18. The desired values of b and

40 r : '1_ '

i o _om_uted_c_t.< H=_o
-_ _ I ' , _ ' i i % ,

! ! ! ii' ' ;\
5.2[ t ! l : _ '

[ _ j lr l I ' ' %

' : _ : :_i": : 5'°'_ _1_,_\,

C

I _ ' ] ,

44_ i;

li _ i ............. 1

edges i _] ! _ i
, I I _ [ l L--_________

, I . i I , I
r

' : ' i I : I i

' i I _ , i I

1.36 1.40 1.44 i.54 /.68 ,'. 72 /. 76 / _0

b

FIGURg l$.--Valu_l foulld for b slid c fro_t tImO to I[_ _.

c, for intermediate values of H, are obviously given by
points on some line connecting p and q. By trying a
number of points distributed over the area between p
and _, plotting the results on figure 1, and making use
of cross plotting, we locate with sufficient accuracy the
lines shown in figure 18, wlfich correspond to the lower

part of the curves in figatre 1. Points on either side of
the lines in figure 18 give points above the curves in
figure I. Table III give_ sets of values of b, c, a, k,
H', /-/,,and A obtained in this way. Equations (1)
are merely formulas which have been found nearly to
check the relation b_tween A and H given by these
values, as will be seen from the last column of table
III. Corresponding values of k and H have been
plotted in figure 3, forming the left-hand end el the
curves shown, which approach asymptotically the
portions previously found, at the right.

The theoretical value of the angle which the buckling

waves make with the axial direction is tan-_-_for

each of the four components of the wave, as has been
pointed out previously. As it has been shown that
the components involving A_and X_are comparatively
unimportant, and that the other two components are
of nearly the same magnitude, an approximate value
for the angle of the resultant wave is evidently
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iAt+>q d _a_ ia
e- tan---_ _- tan-_ - tan-_ (32)

A more accurate value for three particular cases can be

found from the three available solutions for the shape

of the buckling deflection. Setting equal .to zero the
derivative with respect to s of the expreseion for w,

we obtain the equation of the line at the top or
bottom of the wave. The desired angle is the tangent
of the slope of this line, or tan -1 ds/dz. It is found that,

for these extreme case_, the angle is nearly constant
near the middle of the tube, and checks the value

found from (32) within about 10 percent. Hence (32)
is probably sufficiently accurate for a check on the
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tests, especially as it is difficult to get a very accurate

value for _ from experiments. The curves of figure
4 were plotted from (32), using values of a, k, and H

from table III. Equation (3) is also obtained from

(32), using the value of _ for _- =.

The author wishes to acknowledge the valuable sug-

gestions of Dr. Theodor yon KL'mgn for interpreting

the application of the simplified equilibrium equations ;
the help of Messrs. K. W. DonneU and L. Secretan in

carrying out the experiments; and several helpful criti-
cisms from Dr. S. Timoshenko.
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TABLE II

{ I

CLAMPED EDGES

n.H_J Expr_x_xion ' it,,/_
t27)

2.73 } 34_3

11641 a0_ 4+101 _,_662 I i,_2

1._,, .+,.+o! 1._=._
+f2 I +

24 7 . ............

57.7 I 57.7 I L. 49

._ 1_._ i L;_:i• _ j I. :_1.47
" t_13

20. 062 _ 37
.3_,5.(;t'./')1I ._(,'J')]

HINGED EDGES

_,_t _g 131 oi _ .............l._lz i 2.1. 1_i :.,'z.s ._._ t..+.-o
I. 39L I 4. 74 3. 31 8_ F ,'8. 3 78. 2 ' I. 1_12
1.414 I 637t 6&t I._'_OT I 125.7 12641 I._.q)

7.44 6.0_ { _ ;_37 |..'_1.4_1 I 617
I..',oo I t4.0 8Z 240 } 1.9_6 1, ,J-I+'t1'+_ i ,•++

I ._-. ='+• z/2 _ .385(niJi) 1 l1. o.4,0
f

TABLE III

i
I Rt, side

b c ,ilk 11' i l, .t eq.(I)

CLAMPED EDGES

t._ 4.32 2.0_

i._l 4._$I I "14
1.751 5.22 °..47
1. ,'_.1 65_ _9l
1J91 69_ 3.53

1. d78 60S &_
1._ 6.0_t 4.10

i
L. <_ I .......... I li 7. :i9 I 7.39

3. L81 ._Tl i.ii9 i 7. ,"3. i 7. t_
_71 I 2.58 I 5. J0 i _.47 i 9._

a, 21 ._3. ¢i _. 5 :_. ;l 35. _J
IR 'J2 377 426 I;.'8 L_17. _ _ I_ 2.300 440 4;_

HINGED EDGES

L_ 2.gTT L44_3.16 L_3

t:3O_ I 2.11 c_o
t. tOt I 4,O6 2.t5
1.404 tl 2.56
1.4LO 4.7"/ 2.04

1.391 4.74 3.21

LlS i o i ,.m+ +.to

2.81, _.07 I 10. lO.t_ I
£83L 3.3.1 _ 9. S2

• :I_3 i
7.11 I 131 55.3 : _-2

2. 3iH't I . '+ L 1821_ i 1+L82,H,

I
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